On the toughening of brittle materials by grain bridging: promoting intergranular fracture through grain angle, strength, and toughness

نویسندگان

  • J. W. Foulk
  • R. O. Ritchie
چکیده

The structural reliability of many brittle materials such as structural ceramics relies on the occurrence of intergranular, as opposed to transgranular, fracture in order to induce toughening by grain bridging. For a constant grain boundary strength and grain boundary toughness, the current work examines the role of grain strength, grain toughness, and grain angle in promoting intergranular fracture in order to maintain such toughening. Previous studies have illustrated that an intergranular path and the consequent grain bridging process can be partitioned into five distinct regimes, namely: propagate, kink, arrest, stall and bridge. To determine the validity of the assumed intergranular path, the classical penentration/deflection problem of a crack impinging on an interface is reexamined within a cohesive zone framework for intergranular and transgranular fracture. Results considering both modes of propagation, i.e., a transgranular and intergranular path, reveal that crack-tip shielding is a natural outcome of the cohesive zone approach to fracture. Cohesive zone growth in one mode shields the opposing mode from the stresses required for cohesive zone initiation. Although stable propagation occurs when the required driving force is equivalent to the toughness for either transgranular or intergranular fracture, the mode of propagation depends on the normalized grain strength, normalized grain toughness, and grain angle. For each grain angle, the intersection of single path and multiple path solutions demarcates “strong” grains that increase the macroscopic toughness and “weak” grains that decrease it. The unstable transition to intergranular fracture reveals that an increasing grain toughness requires a growing region of the transgranular cohesive zone be at and near the peak cohesive strength. The Preprint submitted to Journal of the Mechanics and Physics of Solids 30 November 2007 inability of the body to provide the requisite stress field yields an overdriven and unstable configuration. The current results provide restrictions for the achievement of substantial toughening through intergranular fracture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

The effects of HfB₂ and HfN additions on the microstructures and mechanical properties of TiB₂-based ceramic tool materials were investigated. The results showed that the HfB₂ additive not only can inhibit the TiB₂ grain growth but can also change the morphology of some TiB₂ grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine micro...

متن کامل

Shape effect of ultrafine-grained structure on static fracture toughness in low-alloy steel.

A 0.4C-2Si-1Cr-1Mo steel with an ultrafine elongated grain (UFEG) structure and an ultrafine equiaxed grain (UFG) structure was fabricated by multipass caliber rolling at 773 K and subsequent annealing at 973 K. A static three-point bending test was conducted at ambient temperature and at 77 K. The strength-toughness balance of the developed steels was markedly better than that of conventionall...

متن کامل

Brittle fracture in polycrystalline microstructures with the extended nite element method

A two-dimensional numerical model of microstructural e ects in brittle fracture is presented, with an aim towards the understanding of toughening mechanisms in polycrystalline materials such as ceramics. Quasi-static crack propagation is modelled using the extended nite element method (X-FEM) and microstructures are simulated within the framework of the Potts model for grain growth. In the X-FE...

متن کامل

On the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High-Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic: Role of Oxygen

The effects of grain-boundary chemistry on the mechanical properties of high-purity silicon nitride ceramics have been investigated, specifically involving the role of oxygen, present along the grain boundaries, in influencing the fracture behavior. To avoid complications from inadvertently introduced impurities, studies were performed on a high-purity Si3N4 processed using two-step gas-pressur...

متن کامل

Amorphous intergranular films as toughening structural features

The ability of amorphous intergranular films to mitigate damage formation at grain boundaries is studied with molecular dynamics simulations. We find that such films can alter both crack nucleation and crack growth rates by efficiently absorbing dislocations, with thicker films being more effective sinks. Local plastic strain brought by incoming dislocations is diffused into a triangular region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007